Certified approximation of parametric space curves with cubic B-spline curves

نویسندگان

  • Li-Yong Shen
  • Chun-Ming Yuan
  • Xiao-Shan Gao
چکیده

Approximating complex curves with simple parametric curves is widely used in CAGD, CG, and CNC. This paper presents an algorithm to compute a certified approximation to a given parametric space curve with cubic B-spline curves. By certified, we mean that the approximation can approximate the given curve to any given precision and preserve the geometric features of the given curve such as the topology, singular points, etc. The approximated curve is divided into segments called quasi-cubic Bézier curve segments which have properties similar to a cubic rational Bézier curve. And the approximate curve is naturally constructed as the associated cubic rational Bézier curve of the control tetrahedron of a quasi-cubic curve. A novel optimization method is proposed to select proper weights in the cubic rational Bézier curve to approximate the given curve. The error of the approximation is controlled by the size of its tetrahedron, which converges to zero by subdividing the curve segments. As an application, approximate implicit equations of the approximated curves can be computed. Experiments show that the method can approximate space curves of high degrees with high precision and very few cubic Bézier curve segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Implicitization of Parametric Curves Using Cubic Algebraic Splines

This paper presents an algorithm to solve the approximate implicitization of planar parametric curves using cubic algebraic splines. It applies piecewise cubic algebraic curves to give a global G2 continuity approximation to planar parametric curves. Approximation error on approximate implicitization of rational curves is given. Several examples are provided to prove that the proposed method is...

متن کامل

3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)

Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

Algorithm for Geometric

We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...

متن کامل

Paths of C-Bézier and C-B-spline curves

C-Bézier and C-B-spline curves, as the trigonometric extensions of cubic uniform spline curves are well-known in geometric modeling. These curves depend on a shape parameter α in a way that α → 0 yields the cubic polynomial curves. The geometric effect of the alteration of this parameter is discussed in this paper by the help of relative parametrization and linear approximation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012